

 Zentrum für sichere Informationstechnologie – Austria
Secure Information Technology Center – Austria

 A-1030 Wien, Seidlgasse 22 / 9
Tel.: (+43 1) 503 19 63–0
Fax: (+43 1) 503 19 63–66

A-8010 Graz, Inffeldgasse 16a
Tel.: (+43 316) 873-5514
Fax: (+43 316) 873-5520

 http://www.a-sit.at
E-Mail: office@a-sit.at

DVR: 1035461 ZVR: 948166612 UID: ATU60778947

Project Report – Security Aspects of Web APIs Page: 1 of 24

SECURITY ASPECTS OF WEB-APIS

Project Report
Version 1.0, 13.3.2017

Bojan Suzic – bojan.suzic@a-sit.at

Abstract:

Web-APIs represent a significant building block of the modern Web. They enable efficient and technology
neutral data and process integration between diverse entities and platforms. As an innovation driver, they
facilitate the creation of new business models and products. Based on the currently diverse range of models
and implementations, as well as missing standardizations, it is not easy to evaluate the current state of Web
APIs and their development. Information from several web directories or API search engines can be used as
partial parameters to estimate the adoption level and features of publicly exposed Web APIs. From this point,
the ProgrammableWeb lists and categorizes more than 15,000 APIs which are registered, published and
exposed to external parties by companies located world-wide.

The broad variety of APIs, as well as the management of their lifecycles, motivated the inception of
specifications and tools to ease and accelerate their development and integration in programmatic
environments. The most known examples of such frameworks are Swagger (OpenAPI), RAML and API
BluePrint. These frameworks establish specifications and provide supporting tools with primary goals to
support the design, implementation, maintenance, documentation and sharing of APIs. They rely on JSON or
YAML-based code that describes Web API structure and is reused by supporting tools to provide a specific
functionality in the domains such as API documentation or management.

Focused on practical aspects of API development and integration, these specifications do not put a particular
emphasis on non-functional aspects, such as security. This work particularly addresses that aspect by
evaluating existing security-related features of API-description frameworks, investigating existing gaps, as
well as the application and extension of these frameworks. It further explores possible synergies and
orthogonal integrations with other frameworks and tools with the potential to deliver additional benefits
relevant to the security of Web APIs and overall security management in distributed environments.

http://www.a-sit.at/
mailto:bojan.suzic@a-sit.at

Project Report – Security Aspects of Web APIs Page: 2 of 24

Contents
Contents 2

Figures 3

Tables 3

1. Introduction 4

2. Web API Interfaces 5

3. Web API Description Specifications 7
3.1. OpenAPI concepts 8
3.2. Security mechanisms in OpenAPI 10
3.3. RAML concepts 12
3.4. Security mechanisms in RAML 14
3.5. API BluePrint concepts 14

4. Issues in Existing Description Approaches 15
4.1. Establishing security descriptions in frameworks 15
4.2. Communicating security requirements 16
4.3. Understanding authorization scopes 17
4.4. Integrating authorization capabilities 18

5. Beyond API Descriptions 18
5.1. Positioning description frameworks 18
5.2. Application within a broader security-related ecosystem 19
5.3. Benefits of integration of API descriptions 21

6. Conclusion 23

Project Report – Security Aspects of Web APIs Page: 3 of 24

Figures

Figure 1: The evolution of APIs ... 5

Figure 2: Google Trends: interest between 2012 and 2016 for term "web api" 6

Figure 3: Differences in organization of 2.0 and 3.0 versions of OpenAPI 8

Figure 4: Important entities in OpenAPI 3.0 information model.. 9

Figure 5: Example operation element formated in YAML .. 10

Figure 6: Establishing security scheme and definitions in OpenAPI 3.0 .. 11

Figure 7: Example definition of two supported security mechanisms ... 11

Figure 8: Expression of Security Requirement in OpenAPI 3.0 ... 11

Figure 9: RAML 1.0 general document structure ... 12

Figure 10: Abstract entities for definition of resources and methods in RAML 13

Figure 11: Example definition of a resource type using inheritance ... 13

Figure 12: Defining security capabilities in RAML.. 14

Figure 13: Comparing OpenAPI and RAML specification of security configurations 16

Figure 14: Security requirements in OpenAPI considering API keys and OAuth 2 methods 16

Figure 15: Security requirements in RAML .. 17

Figure 16: Mapping OpenAPI and RAML descriptions to the concepts of DASP ontology............. 20

Tables

Table 1: Basic comparison of three main frameworks ... 7

Table 2: Basic classes used for API modelling in DASP-Core ontology .. 19

Project Report – Security Aspects of Web APIs Page: 4 of 24

1. Introduction
The data as a driver of economy and innovation is recognized by many industrial or administrative
entities. While industrial players intensively rely on data to generate competitive advantage,
establish new services or new markets [1], the administrative entities only recently started to
integrate data in their widely reaching initiatives. One of the examples in this direction is provided
by the Communication of EC [2], which identifies important building blocks and establishes the
action plan to support the growth of the data-driven economy. The cloud computing is there
acknowledged as one of the key enablers of growth and development in all sectors for citizens,
businesses and public administrations, especially considering the enhancement and adoption of
data value chain [3]. One additional example that can be partially considered as a supporting
action is also a recent EU Directive on Payment Services (PSP2) [4], which among other
objectives, aims to support the establishment of new and open interfaces to facilitate the exchange
of data and services from the banking sector in a structured way.

In a typical data sharing scenario, the interfaces between systems on Web are established using
Web Services or Web APIs, which allow the interaction, data exchange and service consumption
across different platforms, systems and organizations using a set of standardized protocols and
tools. In the interpretations of PSP2, Web APIs are one of the essential technologies that should
be employed to establish open interfaces among the diverse interacting entities in payment service
chains [5]. The Web APIs are, however, since the last decade one of the broadly adopted means
to open data and interfaces to external parties. The portals such as ProgrammableWeb1 count
already more than 15,000 different APIs classified in more than one hundred of thematic
categories. Although some may question the completeness of API directories, as well as the
timeliness of their data, the wide presence of APIs in today’s web is hard to be dissented.

There are several technologies that support the setting up of Web APIs and delivery of Web
Services. Although traditional web services2 were initially preferred by businesses, often due to
their structured interfaces and strict standardization, RESTful interfaces became the dominant
approach to support Web APIs during the recent years [6]. This can be easily observed on the
example of ProgrammableWeb, which reports an exceptional increase in registrations of RESTful
APIs since 2011.

Following the broad adoption of Web APIs and the emergence of related issues and challenges
from their increased use, many approaches were incepted to provide structured descriptions of
APIs or support their integration in a broader ecosystem. This report focuses on RESTful APIs and
hence the solutions aimed to provide structured descriptions of interfaces based on this paradigm.

The primary goal of this report is to identify the currently adopted or emerging specifications for the
structured description of API interfaces, evaluate the features of existing approaches in the terms
of security, and investigate and further develop their application or use scenarios with the objective
to advance the security management within and across the systems and organizations.

After this introduction, the second section of the report presents the conceptual developments and
evolution of API approaches and summarizes the actual endeavors aimed to classify interfaces
present on the web. Then, the third section introduces the Web API specifications currently applied
web-wide, focusing on the assessment of two approaches and their security-related features. The
fourth section of this document deals with the issues and challenges characterizing selected
frameworks, which are then further positioned in the subsequent section, both in the terms of
development, application, security relevance and potential benefits arising from integration with the
other frameworks. This report then concludes with a summary.

1 http://www.programmableweb.com
2 WS-* family of standards

Project Report – Security Aspects of Web APIs Page: 5 of 24

2. Web API Interfaces
The idea that underlies today’s APIs has been existing since the practical adoption of computing.
There can be recognized four significant transitions that characterize data and system integration
for the purpose of data interchange, as shown in Figure 1.

The first phase, specific for the 1960s to 1980s, has been characterized by the inception of basic
approaches to interconnect systems, such as ARPANET or establishment of TCP sessions. The
further developments, characteristic for the 1980s to 1990s, led to the adoption of techniques such
as point-to-point interfaces and electronic data interchange. The significant adoption of Web
subsequently led to the development of techniques based on enterprise service bus and service-
oriented architectures.

Figure 1: The evolution of APIs

Since the 2000s we are witnessing strong developments and the emergence of the terms such as
“API economy” [1]. This concept primarily emphasizes the innovation capability of networked data
exchange and service consumption, backed by technologies and protocols that apply the
separation of services, interfaces, and their functionality. This allowed the creation of businesses
that, for instance, specialize in providing APIs to their clients, strongly base their infrastructure and
business model on third party APIs, or businesses that specialize in managing, integrating,
brokering, documenting or testing external APIs.

The growth of public interest in Web APIs can be noticed from search trends on Google, as
presented in Figure 2, which describes the evolution of interest for term “web api” for the period
since the beginning of 2012 and the end of 2016.

The growing number of devices that are connected to the Internet raises the significance of data
sharing and integration among them. Beside traditional, user-oriented devices, such as computers,
laptops, tablets or smartphones, there is an increasing number of other independently deployed
devices and appliances that interact through the internetworked world. The examples are smart-
home appliances, such as refrigerators, alarms, lighting and other devices that can control
household equipment. In addition to them connected are vast types of Internet-of-Things devices
such as electric meters, or sensors that constantly monitor their environment and collect data, up
to the agricultural equipment that controls the fields and production facilities.

Project Report – Security Aspects of Web APIs Page: 6 of 24

Figure 2: Google Trends: interest between 2012 and 2016 for term "web api"

In the auto industry, the recent developments aim to interconnect cars and other transportation
means with the Internet and other subjects. From this point, APIs are important as they provide
structured and broadly adopted means to exchange the data between devices and integrate their
exposed functionality in the composite processes that cross the device, organizational or
jurisdictional boundaries.

The significance of data integration and exchange as a significant innovation and growth driver, as
well as a market force, has been acknowledged in the field of public authorities. In its recent
communication [2], European Commission recognizes Web APIs as one of the enablers for data
exchange in the industry. One of the recommendations hence suggests dedicating additional
efforts to support the development of open, standardized and well-documented APIs that can serve
as further provision and exchange of data in machine-readable formats with accompanying meta-
data. Another particular measure from EU authorities aimed to support the development and
adoption of API-based, layered service approaches can be noticed in the Payment services
directive [4, 7]. This initiative intends to promote the emergence of new players and markets as
well as the development of innovative mobile and internet payments to support the world
competitiveness.

Several initiatives to categorize and track the API developments exist to date. One of the most
known portals is ProgrammableWeb3, which lists about 15,000 APIs in its catalogue. The
APIhound4 service implemented automated indexing machine specialized for Web APIs, which
gathered over 50,000 specifications to date. Some other services, such as APIs.IO5 and
APIs.guru6 focus on manual maintenance of API catalogues with additional metadata that enables
their automated retrieval and reasoning on a structured way. Due to the involved overhead, these
two approaches index a bit more than 1,000 APIs.

Due to the diverse nature of APIs, quick developments, disparate technologies used to design and
provide their functionality, and a lack of standardization, it is hard to assess the precise number of
the publicly available APIs, or to classify them based on their properties. The survey of Bülthoff and
Maleshkova [6] however provides some indicative results on nature of top 45 Web APIs and their
underlying features.

3 http://www.programmableweb.com
4 http://apihound.com/
5 http://apis.io/
6 https://apis.guru

Project Report – Security Aspects of Web APIs Page: 7 of 24

3. Web API Description Specifications
During the last years, several approaches to describe RESTful APIs have emerged. The most
known among them, Swagger, is recently adopted as a reference for OpenAPI specification,
backed by several important industry players. RAML, less adopted but more expressive and
complete, is the second approach that is being supported by companies focused on development
of integration platforms and API management solutions. Finally, API Blueprint, is less a
specification and more an effort that positively resonated in community and gained a broader
acceptance.

Subsequent sections describe OpenAPI and RAML in more detail and evaluate them in the terms
of security related capabilities. Aside the general comparison, API Blueprint is excluded from the
more detailed analysis as it more focuses on functional features and (still) do not provide a
structured mean to express security related properties or requirements.

The following table shows the basic comparison between three main API description technologies
applied in the practice.

 OpenAPI RAML API Blueprint

Basic
information Format JSON, YAML YAML Markdown

 Workgroup Yes Yes No

Institutional
support

3Scale, CA technologies,
Google, Microsoft, Paypal,
IBM, Atlassian, Adobe

Mulesoft,
AngularJS,
Akamai, Cisco,
VmWare, Akana

Apiary

 API design
approach

Top-down
Bottom-up Top-down Top-down

 Current
version

2.0
(3.0-devel) 1.0 1A9

Security
features

Authentication

HTTP Basic
API keys
OAuth 2 (implicit,
password, client
credentials, authorization
code)
OpenID Connect

HTTP Basic
HTTP Digest
OAuth 1.0 and
2.0
Pass Through

Not
supported
(Considered
in RFC
documents
published
separately)

 Security
filtering

Filtering access to the
documentation itself - -

Community Stackoverflow
questions ~8200 ~600 ~1500

 Github
contributors ~90 ~30 ~50

 Github stars ~5700 ~700 ~5000

 Github forks ~1700 ~200 ~1500

Table 1: Basic comparison of three main frameworks

Project Report – Security Aspects of Web APIs Page: 8 of 24

3.1. OpenAPI concepts
OpenAPI is the effort organized and backed by Linux Foundation and relevant industry players
from several areas. It builds on Swagger, an initiative that has been originally started by Wordnik7
and later donated to the community in efforts to develop and adopt an open specification for
machine-readable interfaces for describing, producing, consuming and visualizing RESTful
services. In this sense, OpenAPI 3.0 represents the first significant milestone after the adoption of
Swagger as a base for OpenAPI specifications. Considering the fact that it is currently in beta, and
expected to be published soon, in this work we rely on this specification and refer to the OpenAPI
2.0 (original Swagger) to point to significant changes.

Compared to its predecessor, OpenAPI 3.0 brings the following categories of changes:

o Structural improvements

o Extending capabilities of request parameters

o Improving protocol and payload handling

o Improving description of documentation and its integration with examples

o Advancing capability of security models

o Extending the scope of RESTful path definitions

In overall, the structure of the description document has been simplified, both with the aim to
improve (human) readability and navigation but also to support definition and reusability of its
common components. The change that mostly deals with the document structure is illustrated on
Figure 3, which highlights the modifications between two versions of the specification.

Figure 3: Differences in organization of 2.0 and 3.0 versions of OpenAPI

7 An non-profit organization that provides language and dictionary resources

Project Report – Security Aspects of Web APIs Page: 9 of 24

One of the most significant changes is the Components Object, which contains a range of other
objects that establish the definitions reusable in other parts of specifications. These definitions may
include the formats of responses, parameters, headers, callbacks or security parameters, which
are further applied in other parts of the definitions by the means of references.

The overall structure of Components section is shown on the right part of Figure 4.

Figure 4: Important entities in OpenAPI 3.0 information model

The left part of Figure 4 shows the structure of the Paths section, which contains a set of elements
that describe individual URL paths i.e. endpoints of a service. Based on other definitions provided
in the root or other elements of document description, the paths are reused in the specification
document and by the consumer client. This is done by concatenating them to the server address
and base path, following their hierarchical establishment. Each of path elements is denoted as a
PathItem, aiming to granularly describe supported operations over a particular path that are
derived from standard HTTP methods. Hence, a path item delivers a particular operation and
provides a structured description of supported capabilities, required parameters, as well as
predefined responses and available callbacks that apply to each described operation.

Figure 5 shows the example code in YAML that describes an Operation, a primary element that
is contained in the PathItem object. In this case, the operation is executed as PUT HTTP method
(defined in the PathItem object, not shown here). The call expects a parameter petId, which is a
required string contained in the path of the URL. Other parameters are provided in the request
body, which expects a form that contains parameters related to the name and status of the entity.
After providing the supported HTTP response codes and structures, the operation also defines the
security requirements that are expected to be fulfilled for the request to be successfully executed.
In the subsequent section, the role of this capability and its conceptual dimension will be
approached in more details

Project Report – Security Aspects of Web APIs Page: 10 of 24

Figure 5: Example operation element formated in YAML

3.2. Security mechanisms in OpenAPI
The security model envisaged in OpenAPI assumes (1) the abstract definition of security related
capabilities of the exposed web interfaces on a level of a particular interface (document), and then
(2) subsequent reuse of those definitions across the described API. These definitions can be
applied at different levels, starting from broader API segments, such as whole endpoints and their
sub-endpoints, to particular operations and calls registered under each of those entities, which may
impose additional security requirements than their hierarchically related counterparts.

Such organization enables specification of different security requirements for parts of interface that
are e.g. related to reading the data and the ones that are dedicated to insert or update data.

The first element relevant for the security functionality is the Security Definitions Object.
It is contained in the Components section and serves as a container for supported and reusable
building blocks that describe security functionalities referenced across the API. The establishment
of these elements from the document root is shown in Figure 6. Security Definitions hence
provide a description of each authentication mechanism that is or may be used in the API.

tags:
- pet
summary: Updates a pet in the store with form data
description: ''
operationId: updatePetWithForm
parameters:
- name: petId
 in: path
 description: ID of pet that needs to be updated
 required: true
 type: string
requestBody:
 content:
 'application/x-www-form-urlencoded':
 schema:
 properties:
 name:
 description: Updated name of the pet
 type: string
 status:
 description: Updated status of the pet
 type: string
 required:
 - status
responses:
 '200':
 description: Pet updated.
 content:
 'application/json': {}
 'application/xml': {}
 '405':
 description: Invalid input
 content:
 'application/json': {}
 'application/xml': {}
security:
- petstore_auth:
 - write:pets
 - read:pets

Project Report – Security Aspects of Web APIs Page: 11 of 24

Figure 6: Establishing security scheme and definitions in OpenAPI 3.0

Each of those elements represents a particular Security Scheme. The first element in a scheme
determines the type of the scheme8, which then implies the fields in definition structure that have
to be populated and integrated. The instances of this object are reused by other objects in the API,
allowing a higher level of granularity and the application of different security (authentication)
schemes in the sections of the exposed and described API.

Figure 8 shows the abstract application of this element by other structures present in OpenAPI
document. The example description that illustrates how Security Schemes are defined is shown
in Figure 7. Two supported methods are announced there: (1) traditional API keys, which are
provided in the request header, and (2) OAuth 2 with implicit flow, specifying authorization URL
and two supported authorization scopes.

Figure 7: Example definition of two supported security mechanisms

Figure 8: Expression of Security Requirement in OpenAPI 3.0

8 One of the fields foreseen by the specification

api_key:
 type: apiKey
 name: api_key
 in: header
petstore_auth:
 type: oauth2
 flow:
 implicit:
 authorizationUrl: http://swagger.io/api/oauth/dialog
 scopes:
 write:pets: modify pets in your account
 read:pets: read your pets

Project Report – Security Aspects of Web APIs Page: 12 of 24

3.3. RAML concepts

RAML (RESTful API Modelling Language) was first proposed in 2013 with the goal to support API
design and the management of its lifecycle from scratch. Although it was proposed more like
proprietary approach, RAML is today managed by the dedicated workgroup consisting of several
important industry players and open-sourced in the form of an Apache license.

In its current version, 1.0 RAML represents a step towards additional maturity and expressiveness
compared to previous RAML 0.8. In comparison to other approaches, RAML introduces the
concept of libraries, which are sets of predefined data and resource types that can be shared and
reused across the systems. This capability is complemented by overlays, a feature that allows the
transparent extensions of API descriptions by including new descriptions and annotations in a
transparent way that can be tracked back through different versions. In practical terms, this feature
enables the implementation of inheritance and overriding of parameters defined in base
documents. It also allows the separation of interfaces from implementations and management of
API lifecycle changes considering both behavioral and implementation aspects of the API.

In comparison to OpenAPI, RAML allows a higher degree of modularization and customization.
While modularization supports reuse of artifacts in the description document or across the
documents, the supported levels of customization allow the expressive and granular definitions of
resource or data types and fine-tuning of options at the level of each method or operation. The
drawback of this feature is, however, a (currently) limited range of tooling and support tools for the
newest version of this specification that makes the creation and integration of RAML documents
easier for developers. The overall organization of RAML specification document includes four main
blocks that enable the definition of traits, as a well as data, resource and annotation types. These
are complemented with the mean to define security capabilities of the API and with imported
libraries, overlays, and extensions.

Figure 9: RAML 1.0 general document structure

In Figure 10 shown is the abstract approach employed to describe resources. Due to the
dependencies between methods, resources, and their constitutive parts, the definition of these
entities is coupled. The structural API descriptions in RAML start with top-level resources, which
are then augmented with nested resources through the different levels. Key for each child node is
its URI, which is relative to URI of its parent. Hence, starting from base URI, each relative URI in
the chain is appended to form a key of each nested resource.

Project Report – Security Aspects of Web APIs Page: 13 of 24

Each instantiation of a resource in RAML is characterized by its type, URI parameters, traits, and
method. The latter is a primary object that allows further specialization of operations that apply to a
resource. These operations correspond to different supported HTTP methods and additionally
specify traits, query strings and query parameters specific to the method as well as the formats of
headers, body, and responses. This allows specifying detailed information for each parameter
expected in header or body, or the parameters that the operation provides back to the caller in a
response. In the scope of these definitions, the rich expressivity features of RAML allow a fine-
tuned specification and reuse of various default or additionally specified types in the root of the
document. The general overview of these fields is provided in Figure 10.

Figure 10: Abstract entities for definition of resources and methods in RAML

Figure 11 illustrates a specification of a resource type in RAML. This example shows a resource
type called companyResource with optional post node that defines required header X-
Chargeback and a custom parameter YY. The resource /servers inherits companyResource
and defines a post method, which based on inheritance has to include the X-Chargeback header
requirement. Similarly YY has to be defined as well. As /queues does not implement optional post
method, it does not have to define X-Chargeback and YY elements. This example illustrates only
a portion of customizable features of RAML, which enables detailed specification of APIs and
servers and extensively supports reuse principles. As such, it represents a solid base for API
lifecycle development cycles, including designing, testing, documenting and reusing of APIs.

Figure 11: Example definition of a resource type using inheritance

title: Example of Optional Properties
resourceTypes:
 companyResource:
 post?:
 description: Info about <<YY>>.
 headers:
 X-Chargeback:
 required: true
/servers:
 type:
 companyResource:
 YY: post method # post defined, force definition of YY parameter
 get:
 post: # will require the X-Chargeback header
/queues:
 type: companyResource
 get:

Project Report – Security Aspects of Web APIs Page: 14 of 24

3.4. Security mechanisms in RAML
Figure 12 visually illustrates the approach followed in RAML to expose and declare security
capabilities of description model. The root of API definition can contain different optional and
required elements, of whom we represent Resources and Security Schemes as the ones most
relevant in current context. Resources is an element that corresponds to path items present in
typical RESTful URI. They reference Methods, which are the operations performed on a resource.
Methods can be defined on an abstract level, referring to all possible methods executed on a
resource, or defined separately for each of HTTP methods, as provided in RFC 2616 and RFC
5789.

Figure 12: Defining security capabilities in RAML

Both of these elements contain the property securedBy, which refers to one of Security
Schemes defined in the root of the document. Security Schemes is hence a set of records that
either configure already defined and supported security (authentication) methods in RAML, or
extend basic specification and establish a new mechanism. Each Security Scheme contained in
this set, therefore, exposes basic data for its representative mechanism and configures that
mechanism by populating settings property.

Following the hierarchy and semantics of Resources and Methods, each of these elements may
point to particular Security Scheme or a set of Security Schemes by referring it using
SecuredBy property. This approach allows denoting a default schema that is valid for the whole
(sub-)API, while each of hierarchically subordinated elements can override parent schema and
introduce its own configuration, as shown through the relations in the figure.

One particular difference in RAML compared to other approaches is the pass-through feature,
which enables to specify passing through the headers or query parameters to API backend, with
the purpose to delegate authentication/authorization. This allows a specification of customized
authentication methods, such as key-based authentication, that allow clients and servers to
exchange authentication tokens using specific parameters provided in the requests.

3.5. API BluePrint concepts

API BluePrint is a solution proposed by Apiary, an independent vendor of API management tools.
In the beginning of 2017th Apiary has been acquired by Oracle.

Project Report – Security Aspects of Web APIs Page: 15 of 24

In its current version, this specification does not establish any kind of controls that communicate
security capabilities of the API or its underlying elements. However, the specification repository9
has several active RFCs that deal with typical authentication mechanisms such as Basic and
OAuth 2 based authentication. These proposals mostly focus on definition of interaction points that
allow i.e. the integration of protocol flows with a client API.

Due to the incomplete and non-agreed approach on addressing the security aspects in API
BluePrint, the current work will not analyze this solution in detail.

4. Issues in Existing Description Approaches
Based on the presented concepts, in the scope of the current work, the features of both
frameworks related to security were analyzed. In this section, we review the issues identified in this
analysis.

4.1. Establishing security descriptions in frameworks
Both OpenAPI and RAML address description of security characteristics in a similar way. They
define fixed structures that need to be populated, depending on security mechanism that is being
applied. However, the abstraction levels used across these two approaches differ in practice.

In OpenAPI, the primary Security Scheme Object contains several fields that describe the
security mechanisms. Of them, the primary field is type, which has to contain one of the
predefined values to refer to the mechanism actually defined in the object. Hence, one of values
apiKey, http, oauth2 or openIdconnect is to be used. Other fields are required and take
different roles, depending on the specified type of security mechanisms. For instance, if API keys
are used, then the fields for name and in have to be specified. Alternatively, in case of OAuth 2,
the flow has to be further specified, by using one of the fields shown in Figure 13 to provide
further configurations relevant for particular OAuth 2.0 flow.

RAML takes a bit more abstract approach. The field type similarly determines the mechanism that
is specified. Depending on its value, other fields such as describedBy and settings are to be
appropriately populated. The former field, optionally specified, is present mostly for descriptive
purposes, to state which headers, query parameters or responses are used by security
mechanism. This way the developers can be informed about the type of the header and its role in
the processes. This kind of specification may help to prevent issues in the naming of header or
query fields, but it also can be used to model requests and responses and apply them for i.e.
firewalling purposes. The latter parameter, settings, contains a map with the parameters that
further specify an authentication method. The choice and naming of these fields differ between the
mechanisms that are employed. The example present on Figure 13 illustrates the case of using
OAuth 1.0 mechanism.

In the cases of both frameworks the coupling of the descriptions can be observed as well as hard-
wired specification of entities that provides information mostly on a syntactic correct level.

9 https://github.com/apiaryio/api-blueprint-rfcs/tree/master/rfcs

Project Report – Security Aspects of Web APIs Page: 16 of 24

Figure 13: Comparing OpenAPI and RAML specification of security configurations

4.2. Communicating security requirements
The concepts present both in OpenAPI and RAML denote Security Requirements, as in the
former, and securedBy reference, as in the latter case. Both of these approaches are applied in
the various levels of descriptive documents and reference existing mechanisms, whose
configuration parameters are already initialized in the related container structure.

Referencing security requirements in OpenAPI relies on a simple structure that contains fields for
name and value. While the name refers to the security scheme declared prior in the Security
Definitions, the value is by default empty and must be populated if OAuth 2 or OpenID Connect are
used. In the latter case, the value needs to correspond to scope names required for the particular
execution.

These cases are illustrated by examples provided in Figure 14, which presents an expression of
security requirements for API keys method and OAuth 2 access, respectively. In the first case, we
can notice that the execution of some operation may be protected by the requirement for the caller
to provide an API key. This description hence provides the information to the caller that a particular
information or a resource requires a possession and integration of API key in the call. In the later
case, the same could be translated to the possession of an access token with two authorization
scopes denoted in the structure.

Figure 14: Security requirements in OpenAPI considering API keys and OAuth 2 methods

Following its reuse capabilities, RAML communicates security requirements similarly by applying
securedBy reference to a particular object. It however extensively relies on reuse, enabling the
less verbose specifications to refer to existing segments located outside of the document. This is

{
 "api_key": []
}

{
 "petstore_auth": [
 "write:pets",
 "read:pets"
]
}

Project Report – Security Aspects of Web APIs Page: 17 of 24

demonstrated by the example from Figure 15. In this snippet the configuration parameters for
OAuth 2.0 authentication are defined in the separate file. These are referenced by securedBy
inside of a particular URL path.

Figure 15: Security requirements in RAML

The example above implies that the resource may be called without authentication (the existence
of null parameter in the definition). In the case of authentication, this example requires predefined
OAuth 2.0 flow to be applied and communicates administrative scope as required authorization to
fully access the resource.

Both of these approaches integrate security mechanisms that are currently broadly in use. While
OpenAPI partially includes OpenID Connect as well, the RAML does not assume this protocol as a
part of its primary specification. Although relying on hard-wired definitions, both of these
approaches allow automated agents to automatically derive related configuration data and take
part in authentication flows required for particular action. These approaches, however, require
manually based and hard-wired implementation of such functionalities. This hinders the adoption of
potentially new security mechanisms and requires additional manual work on the side of client
applications and developers to integrate all required mechanisms.

As they primarily focus on authentication mechanisms present among a broader range of available
security-related controls, the communication of other security requirements and their practical
integration in applications is still to be further considered. The security frameworks, such as
RMIAS, deliver a range of other potential security controls that need to be further structurally
presented and integrated into application flows.

4.3. Understanding authorization scopes

Authorization scopes define the extent of the authorization consent that resource owner agrees
upon while delegating resources or access to them to other entities. They are a part of OAuth 2.0
framework, which is currently only cross-organizational authorization framework broadly used on
the web.

Although syntactically different, both RAML and OpenAPI approaches illustrate hard-wiring aspect
that characterizes the description of security capabilities and requirements. The meaning and role
of the fields and structures can only be implicitly assumed; it is not consistent across different
mechanisms and need to be integrated in out-of-the band process by developers.

In a practical situation referring to authorization scopes, this means that the accessing agent may
retrieve the data structures that reference particular scopes, such as write:pets or administrator in
above two cases, but cannot infer their real meaning. The accessing agent hence has no
information on what actually a particular scope means and what is necessary to perform to satisfy
its represented requirement. Such descriptions, although syntactically correctly structured, can still
be fully understood only by humans (developers) who access the descriptions and correlate them
with the documentation and implementation manuals that are separately available and aimed at
humans. Related explanations of this issue on a general level have been provided in [8, 9], while
more details dealing with security domain have been provided in [10, 11] and [12] concerning
authorization scopes.

As the machines do not have access to relevant information and cannot derive the out-of-the band
knowledge, they cannot be involved in deeper integration levels. This deficit can be partially

title: GitHub API
version: v3
baseUri: https://api.github.com
securitySchemes:
 oauth_2_0:!include securitySchemes/oauth_2_0.raml
/users/{userid}/gists:
 get:
 securedBy: [null, oauth_2_0: { scopes: [administrator] }]

Project Report – Security Aspects of Web APIs Page: 18 of 24

compensated by applying coupling and hard-wired based approaches; they however impose high
development and maintenance overheads and can potentially lead to issues in terms of
interoperability and security.

4.4. Integrating authorization capabilities
The frameworks analyzed in this work consider a range of security mechanisms to protect APIs,
including API keys, OAuth 2, OpenID Connect and diverse HTTP Authorization means. The API
keys mechanism itself is traditionally applied to secure the access to the whole API. This means
that a particular API key practically cannot be applied to secure different parts (functions) of an API
or to provide context-sensitive security. OAuth 2 goes beyond that limitation by establishing
authorization scopes, of whom each may correspond to some API part or an underlying
functionality. The meaning of authorization scopes is, however, opaque for the application as it can
be derived only by reading and interpreting the natural language based documentation that is
primarily intended for humans.

The API description approaches, such as OpenAPI and RAML, do not provide facilities to describe
the meaning and extent of authorization scopes beyond their simple declaration. In addition to that,
these frameworks do not assume the mechanisms for correlation between other structures in the
document, such as RESTful paths and structures, and authorization scopes.

After achieving the understanding of the role and extent of authorization scopes, the next step
would be their practical integration into interaction flows. However, without the means for the
machine to infer und understand their meaning, especially across the domains, the practical
application of the scopes is limited to their out-of-the-band enumeration. This also implies the
restricted application of scopes within the RESTful ecosystem, whose dependence on manual
integration hinders capabilities of automated and inter-domain security management.

5. Beyond API Descriptions
This section presents the results of the work that aims to bring together potential synergistic effects
of existing Web API description approaches, such as OpenAPI and RAML frameworks, and novel
multilateral semantic data security framework that enables cooperative and transformative security
management across domains.

5.1. Positioning description frameworks

API description frameworks, such as OpenAPI or RAML, primarily serve the purpose to provide the
companies and developers with the tools to assist the operations within API lifecycle management.
The lifecycle of APIs contains several milestones, which are described in the following paragraphs.

In the first phase, API design, the requirements are established and API is designed and
structured to correspond to the needs of relevant parties. By relying on a structured code that
describes the API in the background, the users can employ diverse tools and other helpers to
visually design interfaces using as little coding as possible. Furthermore, the integration of visual
tools in the whole lifecycle may accelerate and improve the process of redesigning and improving
APIs by reusing existing API representations in structured form.

Building is a second phase during which an API gets programmatically generated, what usually
corresponds to coding activities using a particular language and a framework. This activity is
usually performed manually and may be error-prone task. The API descriptions in this phase are
employed to derive automated code that can be easily integrated in different languages and
frameworks with a minimal coding effort.

Testing represents an important step in the implementation and quality assurance of each API,
supporting the production of bug-free code as well as harmonization of inputs and outputs of

Project Report – Security Aspects of Web APIs Page: 19 of 24

interfaces. Testing also facilitates the evolution of APIs by maintaining backward compatibility
across the different versions. The execution of these tasks is significantly improved by reusing the
structured descriptive code that can be applied to automatically generate tests, examine their
coverage or check the conformance to overall requirements.

Documenting is an important task in every software development process. The reliance on
structured code for API description enables automated maintenance of human-readable
documentation in different formats that are suitable for various end-user devices or applications.

Reuse is a step that allows the application of existing API descriptions by several parties in a
collaborative way. In this sense, APIs can be improved, extended, enhanced or simply reused in
other processes or systems on a structured way that is independent on maintainer’s infrastructure
or processes.

It should be noticed that all these activities gravitate to the software development process of an
API. From this point, the primary purpose of API description frameworks is to remove existing
barriers that occur during the maintenance, coding, documenting and visualizing of APIs.
Accordingly, the technology and approach selected to provide API descriptions correspond to
these goals but impose some limitations to the potential application of descriptions in other areas.
For instance, the reliance on pure syntactic-based descriptions restricts their reuse in the quickly
advancing fields that recently gained a broad public attention, such as artificial intelligence,
cognitive computing, smart systems and systems of systems. Similarly, the tree-based data
structures utilized to format the documents impose predefined and less flexible constructs that
hinder the establishment of rich relations between different nodes.

Furthermore, both of the approaches considered in this document restrict the application of API
descriptions in the above-mentioned areas, including information security as well. This is due to the
strict formats that do not structurally expose underlying semantics.

5.2. Application within a broader security-related ecosystem

DASP Framework (DAta Sharing and Processing) is a set of tools and vocabularies used to define
and manage security policies across (organizational) domains and protocols, with the focus on
transactions based on Web-API interfaces [11, 12]. This work aims to bridge existing API
description frameworks with the DASP framework, enabling the reuse of available API descriptions
and their integration with concepts and functionalities provided by DASP.

Table 1 presents the reduced set of elements from DASP-Core vocabulary that are relevant for the
scope of this work. In a typical scenario, these elements are applied to describe underlying
semantics of web services using the constructs such as ontologies (vocabularies), classes, axioms
and relationships.

Class Description
Service Abstract system that exposes resources and operations

Resource Basic type that represents retrievable resource by the means
of API

Element Element is a consisting part of a resource

Action Entity that represents the activity that can be executed on a
resource

Operation References the operation that can be executed over the
particular element or action result

Table 2: Basic classes used for API modelling in DASP-Core ontology

Project Report – Security Aspects of Web APIs Page: 20 of 24

Due to the expressive modeling capabilities of underlying RDF and OWL languages [13, 14], the
models based on DASP framework separate the description from the instantiation of models10 and
can support multiple relations and inheritance across the classes. The models established with this
framework can be exposed side-by-side with standard API resources, by integrating them in API
call response headers, or they can be retrieved using separate endpoints as well.

The description of API interfaces using classes in DASP-Core vocabulary starts with the Service
class, which denotes a service compartment and provides its other properties. By applying service
classes inherited from Service-based concept hierarchy, the different type of services can be
specified. The service then exposes a Resource, which represents an entity that is provided by
the API and as such can be retrieved or modified. An Element, on the other hand, is a constitutive
part of a Resource that is provided through the interface dedicated to the Resource. I

n a typical case, the element can be isolated by applying an XPath expression, or it can be
presented as a part of a JSON document. Actions and Operations share similar functionality.
While action represents an activity that can be executed over a resource as a whole, operation
denotes a transformation that can be executed over particular element or action result and is
ephemeral in nature. In other words, the operation provides a temporary, context-sensitive
representation of an element or result of an action.

Figure 16 shows a mapping between concepts in OpenAPI and RAML, on the one side, and
reduced DASP-Core vocabulary. The purpose of this mapping is to enable the reuse of existing
API descriptions in one of these two formats in DASP security framework. This way, the tools that
are part of the framework can be employed to provide security functionality that is scalable and
decoupled from original web services or their internal processes.

Figure 16: Mapping OpenAPI and RAML descriptions to the concepts of DASP ontology

10 A-Box vs T-Box modelling

Project Report – Security Aspects of Web APIs Page: 21 of 24

5.3. Benefits of integration of API descriptions
The integration of API description formats with other technologies and mechanisms allows a range
of applications that extend the overall applicability beyond initially envisioned functionalities such
as the generation of human-readable documentation or of implementation code. This section
considers the benefits arising from the integration with semantic-based structures and tools for
multilateral data security management11 on a high-level.

Cross-system interoperability
API descriptions based on syntactic structures by default support the interoperability only on
syntactical level [15]. This kind of interoperability requires that each party that consumes the
structure has to correlate it with its internal information and knowledge representation models by
manually deriving the meaning from specified syntax and human-readable descriptions and
adopting it to conform to the local environment. This process is costly, time-consuming and error-
prone, leading to the lower level of interoperability or reuse across the systems. From this
perspective, different organizations or systems tend to implement own structures that are coupled
with (own) proprietary systems and do not scale well to other parties. This is especially true for
interoperability with other systems, as there are relatively high interoperability obstacles present,
which require additional effort to be invested.
The integration with reference semantic framework enables to establish the interoperability
between different systems on the semantic level [15]. This transfers the interoperability
requirements from the lower syntactic to higher semantic layer, allowing the exploitation of the data
and structures beyond organizational or system’s boundaries in less costly manner. In this sense,
the syntactic or other adjustments in the data representations on each side can be automatically
resolved with less overhead by relying on the properties of semantic technologies, such as
inference and automated alignment.

Semantic correlation for machine-based understanding
Typical API description structured in the framework such as RAML does not provide the
information on the conceptual level, which is a crucial prerequisite to support machine-based
understanding and reasoning. Such processes require the inferable information that explains
underlying concepts and relationships, including what kind or resources is used, what kind of
method is applied, what type of parameters it receives or provides, and which kind of relation exists
with another resources or entities from the same or other descriptive documents. Even when the
objects are reused in the same document, the software that reads descriptions cannot
automatically infer the knowledge about the real type of that object or its role in a particular context.
Instead, this information has to be hard-coded and manually correlated not only at the creation of
the relationship, but this information also needs to be maintained throughout the process lifecycle.
The reliance on semantic mappings allows automated correlation of resources with existing models
and derivation of their meanings, relationships, and roles based on the intrinsically or extrinsically
provided knowledge in the model. Due to the expressive capabilities of underlying framework,
these relationships can be re-applied to derive supplementary and extensive knowledge, which can
be further employed to provide additional functionality or integration with other tools. Therefore, the
reliance on semantic models enables the transition from data-based structures to knowledge-
based relationships which enable a plethora of potential applications envisaged under cognitive
and autonomous computing [16].

Application outside of API models
As shown in Section 4.1, the integration of existing description frameworks with other tools from
their environments represents basically passive and unidirectional interaction. These frameworks
primarily serve to support activities such as building the documentation or generating client
libraries. The active and bidirectional integration, on the other hand, would mean that other tools
could reference description structures and use them in a dynamic manner that allows adjustments
and back-references on both sides. One example of such applications is the referencing of the
elements provided by these frameworks for the purpose of security or administrative management

11 Particularly considering DASP framework

Project Report – Security Aspects of Web APIs Page: 22 of 24

of web and cloud services. The application related to security management would hence allow a
model of a resource exposed by the API to be reused for authorization management within the
system or, in a more complex scenario, across the systems.
Due to the static, hard-wired underlying structure of existing frameworks, such scenarios are not
easily attainable in practice and impose an extensive re-engineering and maintenance overhead.
By incorporating the API descriptions with DASP framework and applying the techniques such as
semantic uplift and semantic down-lift [17] the static and passive data provided in description
documents can be converted to conceptual models and reused in a new layer that supports
knowledge management and derivation beyond syntactic descriptions.

Requesting authorization
In initial steps of typical interactions12 the clients request a range of authorizations from resource
owner. Existing frameworks structure these requests as access scopes, which represent an
opaque structure without automatically inferable meaning13. This incurs a range of implications to
security and automation, including the inability to correlate the scopes across and within the
systems, to dynamically manage scopes, to relate scopes to resources and roles or to discover the
extent of provided authorizations. The details on these and other issues are provided in [11, 12].
API descriptions translated to and expressed through the concepts from DASP framework, allow to
overcome these issues by providing a means to express the degree of the requested authorization
on a way that is identifiable across the systems and can be traced back to the resource, role or
permission. This allows the agents to dynamically structure, derive and understand the extent of
requested authorizations. Similarly, the application of structured requests enables the resource
owners and servers to correlate and manage requested and provided permissions within a
particular or across the different systems.

Implementing access control
The typical access control of Web API accesses often relies either on API-keys based access
control or on OAuth-based authorization consents. Both of these cases do not allow for integration
with expressive security policies. While API keys determine the access control to the whole API,
OAuth scopes allow the separation of API parts or functionalities and issuance of different access
tokens for requests to separate parts of functionalities of APIs. However, this solution does not
scale well nor allow a full interoperability across different systems. The implementation of access
control is furthermore pertained with additional overhead, as the scopes need to be related and
maintained to accesses and resources in a non-transparent way.
The application of API descriptions brings the possibility to reuse existing API models, as well as
request and response specifications, and to relate them to structured security policies. This way,
the security policies can be related to concepts both on syntactic (system and platform specific)
and semantic (cross-system) layers. By modeling requests, responses, security policies and
resources using the same framework14, the complete process of managing and enforcing security
policies is more transparent and less error prone.

Checking and auditing permissions
API descriptions provide a model of Web API that gives a complete overview over available
endpoints, as well as their supported methods, expected and provided resources. The
establishment of models that describe other relevant activities, resources15 and rules that govern
them16 allow analyzing a coverage of security policies or API endpoints and deriving additional
knowledge about the reach and applicability of security policies. This way the vulnerable resources
or missing security policies can be determined with lower overhead.

12 Such as the ones from OAuth and UMA protocols
13 The accessing agent cannot automatically or autonomously derive the meaning or purpose of the scope, nor
relate it with an existing authorization, role or object.
14 DASP structures and related tools that enable their integration
15 Such as requests and responses
16 Such as security policies

Project Report – Security Aspects of Web APIs Page: 23 of 24

6. Conclusion
Web APIs play increasingly important role in data sharing over the Internet. By relying on
technologically neutral and non-proprietary technologies, Web APIs represent a key building block
in modern cross-organizational web-based interactions. The lack of standardized approaches, a
diverse range of implementations and representations of RESTful interfaces, as well as a present
diversity in applied models and their maturity, however, limit the practical adoption of RESTful Web
APIs. A range of approaches exist that support the lifecycle management of REST APIs. They
facilitate the execution of activities that include design, maintenance, documentation, testing or
code generation from specifications, allowing a faster time-to-market, easier collaboration, sharing
and implementation of Web API interfaces. The existing solutions, however, do not primarily focus
on security, implementing only a subset of features potentially applicable to the security domain.

This work considered two dominant approaches, OpenAPI and RAML, performing the analysis of
their practical applicability and features related to security. This work additionally investigated the
joint application and possible synergies between industry-backed specifications such as OpenAPI
and RAML, with emerging DASP framework for multilateral security management. In the scope of
this work, we established the mappings between concepts in OpenAPI and RAML specifications
and classes and relationships present in DASP framework. By providing integration points for
these frameworks we enabled their reuse and joint application, extending the initial lifecycle
management activities with the security management related capabilities.

Project Report – Security Aspects of Web APIs Page: 24 of 24

References

[1] Nordic APIs, "Ten New Breeds of Businesses That Have Emerged out of the API Economy,"
2016. [Online]. Available: http://bit.ly/2k7T4ie. [Accessed 2017].

[2] European Commision, "Building a European Data Economy," 2017.

[3] European Commission, "Report on the Implementation of the Communication 'Unleashing the
Potential of Cloud Computing in Europe'," 2014.

[4] E. Parliament, "DIRECTIVE (EU) 2015/2366 OF THE EUROPEAN PARLIAMENT AND OF
THE COUNCIL," 2015.

[5] M. Salmony, "The Concept of an Open Standard Interface for Controlled Access to Payment
Services (CAPS)," 2014.

[6] F. Bülthoff and M. Maleshkova, "RESTful or RESTless - Current State of Today's Top Web
APIs," in European Semantic Web Conference, 2014.

[7] Payments UK, "APIs – what do they mean for payments?," 2016.

[8] M. Lanthaler, "On Using JSON-LD to Create Evolvable RESTful Services," in Proceedings of
the 22nd International World Wide Web Conference (WWW2013, 2013.

[9] M. Lanthaler, "Creating 3rd Generation Web APIs with Hydra," in Proceedings of the 22nd
International World Wide Web Conference (WWW2013), 2013.

[10] B. Suzic, "Securing integration of cloud services in cross-domain distributed environments," in
Proceedings of the 31st Annual ACM Symposium on Applied Computing, 2016.

[11] B. Suzic, "User-centered Security Management of API-based Data Integration Workflows,"
NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium, pp. 1233-
1238, 2016.

[12] B. Suzic, Multidimensional Security Policies, Graz: Zentrum für sichere
Informationstechnologie - Austria (A-SIT), 2016.

[13] R. Cyganiak, D. Wood and M. Lanthaler, "RDF 1.1 concepts and abstract syntax," W3C, 2014.

[14] W3C Owl Working Group, OWL 2 Web Ontology Language Document Overview, W3C, 2009.

[15] H. der Veer and A. Wiles, "Achieving Technical Interoperability," ETSI, 2008.

[16] P. Baranyi and A. Csapo, "Definition and synergies of cognitive infocommunications," in Acta
Polytechnica Hungarica 9.1, 2012.

[17] A. I. Rana and B. Jennings, "Semantic uplift of monitoring data to select policies to manage
home area networks," in Advanced Information Networking and Applications (AINA), 2012
IEEE 26th International Conference on, 2012.

[18] D. Hardt, The OAuth 2.0 authorization framework., 2012.

[19] I. Salvadori and F. Siqueira, A Maturity Model for Semantic RESTful Web APIs, IEEE, 2015.

[20] M. Sporny and L. Markus, Json-ld 1.0-a json-based serialization for linked data, W3C, 2014.

	Contents
	Figures
	Tables
	1. Introduction
	2. Web API Interfaces
	3. Web API Description Specifications
	3.1. OpenAPI concepts
	3.2. Security mechanisms in OpenAPI
	3.3. RAML concepts
	3.4. Security mechanisms in RAML
	3.5. API BluePrint concepts

	4. Issues in Existing Description Approaches
	4.1. Establishing security descriptions in frameworks
	4.2. Communicating security requirements
	4.3. Understanding authorization scopes
	4.4. Integrating authorization capabilities

	5. Beyond API Descriptions
	5.1. Positioning description frameworks
	5.2. Application within a broader security-related ecosystem
	5.3. Benefits of integration of API descriptions

	6. Conclusion

